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Abstract

The h-p version of the finite element method based on a pentahedral p-element is applied to three-
dimensional free vibrations of plates. The element’s new hierarchical shape functions are expressed in terms
of the shifted Legendre orthogonal polynomials. The accuracy of the solution can be improved by
simultaneously refining the mesh and increasing the polynomial order. The method is capable of providing
a full frequency spectrum including both the in-plane and the out-of-plane modes. Results of frequency
calculations are first found for a skew plate on a soft edge support and a cantilevered right isosceles
triangular plate and comparisons are made with other methods. Results are also found for a square plate on
a hard edge support and comparisons are made with two-dimensional plate theories. Furthermore, highly
accurate values for a free hexagonal plate are presented for the first time.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Two-dimensional plate theories reduce the dimensionality of the problem from three to two by
making certain assumptions on the stresses in the direction normal to the plate middle surface. These
assumptions greatly simplify the analysis and reduce the computational effort but also introduce errors.
Since a free vibration analysis based on three-dimensional elasticity theory makes no simplifying
assumptions it provides realistic results and brings out physical insights which cannot be predicted by
the two-dimensional theories. Up to date, the research on three-dimensional free vibration analysis has
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

x, y, z rectangular Cartesian coordinates
x1; x2; x3non-dimensional area coordinates
z ¼ 2z=h non-dimensional coordinate
A surface area of element triangular faces
u, v, w displacements in x, y, z directions
p polynomial order
r mass density
E modulus of elasticity
G ¼ E=2ð1þ nÞ shear modulus of elasticity
n Poisson’s ratio
h plate thickness

ka;b element stiffness matrix
ma;b element mass matrix
qb element vector of generalized displace-

ments
M order of element stiffness and mass

matrices
K global stiffness matrix
M global mass matrix
Q global vector of generalized displace-

ments
t time
o natural frequency
O ¼ o

ffiffiffiffiffiffiffiffiffi
r=G

p
frequency parameter
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been limited to developing accurate methods which are mainly suitable for plates of simple geometry
(rectangular, skew, triangular). The most recent of these works are attributed to Liew et al. [1], Cheung
and Zhou [2], and Zhou et al. [3]. Thus, the development of an accurate more general three-
dimensional free vibration analysis is necessary to deal with plates of complex geometry. The highly
accurate h-p version of the finite element method is able to fulfill this goal.
The h-p version of the finite element method has been applied to a two-dimensional problem of

a vibrating membrane [4] and has been shown to offer considerable savings in computational
effort when compared with the standard h-version of the finite element method. The present work
implements for the first time the h-p version of the finite element method based on a pentahedral
p-element to three-dimensional free vibrations of plates. The method can provide a full frequency
spectrum including both the in-plane and the out-of-plane modes.
The hierarchical shape functions for a pentahedral p-element combine the shape functions for a

triangular p-element and those for a one-dimensional p-element. These shape functions were
expressed by Szabo and Babuska [5] in terms of the Legendre orthogonal polynomials. In this
paper, new simple expressions of the hierarchical shape functions for the pentahedral p-element
are given in terms of the shifted Legendre orthogonal polynomials which are more suitable for this
type of element because they are defined in the same interval as area coordinates.
A skew plate on a soft edge support and a cantilevered isosceles triangular plate are first

considered to assess the convergence and accuracy of the present method. A square plate on a
hard edge support is also considered to assess the accuracy of two-dimensional plate theories.
Furthermore, a free hexagonal plate is analyzed to show the applicability of the present method to
plates of more complex domains.

2. Formulation

2.1. The shape functions

A pentahedral element is shown in Fig. 1. The dimensionless coordinates x2, x3 and z are also
shown in the figure. A dependent dimensionless coordinate x1 (¼ 1� x2 � x3) is introduced.
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Fig. 1. The pentahedral element coordinates.
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The shape functions for a pentahedral p-element gbðx1; x2; x3; zÞ (b ¼ 1,2,3,...,N) consist of:
�
 Six nodal shape functions:

x1 1� zð Þ; x2 1� zð Þ; x3 1� zð Þ; x1z; x2z; x3z (1)
�
 ðp� 1Þ shape functions on edge 1-2:

x1x2P
�
i ðx2Þð1� zÞ, (2)
�
 ðp� 1Þ shape functions on edge 2-3:

x2x3P
�
j ðx3Þð1� zÞ, (3)
�
 ðp� 1Þ shape functions on edge 1-3:

x1x3P
�
j ðx3Þð1� zÞ, (4)
�
 ðp� 1Þ shape functions on edge 4-5:

x1x2P
�
i ðx2Þz, (5)
�
 ðp� 1Þ shape functions on edge 5-6:

x2x3P
�
j ðx3Þz, (6)
�
 ðp� 1Þ shape functions on edge 4-6:

x1x3P
�
j ðx3Þz, (7)
�
 ðp� 1Þ shape functions on edge 1-4:

x1fkþ2ðzÞ, (8)
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ðp� 1Þ shape functions on edge 2-5:
�
x2fkþ2ðzÞ, (9)
�
 ðp� 1Þ shape functions on edge 3-6:

x3fkþ2ðzÞ, (10)

where i; j; k ¼ 0; 1; 2; . . . ; p� 2.
�
 ðp� 1Þðp� 2Þ=2 shape functions on face 1-2-3:

x1x2x3P
�
i ðx2ÞP

�
j ðx3Þð1� zÞ, (11)
�
 ðp� 1Þðp� 2Þ=2 shape functions on face 4-5-6:

x1x2x3P
�
i ðx2ÞP

�
j ðx3Þz, (12)

where i; j ¼ 0; 1; 2; . . . ; p� 3 and i þ j ¼ 0; 1; 2; . . . ; p� 3.
�
 ðp� 2Þðp� 3Þ=2 shape functions on face 1-2-5-4:

x1x2P
�
i ðx2Þfkþ2ðzÞ, (13)
�
 ðp� 2Þðp� 3Þ=2 shape functions on face 3-2-5-6:

x2x3P
�
j ðx3Þfkþ2ðzÞ, (14)
�
 ðp� 2Þðp� 3Þ=2 shape functions on face 1-3-6-4:

x1x3P
�
j ðx3Þfkþ2ðzÞ, (15)

where j; k ¼ 0; 1; 2; . . . ; p� 4 and j þ k ¼ 0; 1; 2; . . . ; p� 4.
�
 ðp� 2Þðp� 3Þðp� 4Þ=6 shape functions in the interior of the element:

x1x2x3P
�
i ðx2ÞP

�
j ðx3Þfkþ2ðzÞ, (16)

where i; j; k ¼ 0; 1; 2; . . . ; p� 5 and i þ j þ k ¼ 0; 1; 2; . . . ; p� 5.
In the above, P�r denotes the rth order shifted Legendre orthogonal polynomial and fr is a

function which is defined as

frðzÞ ¼
1

2ð2r� 1Þ
½P�r ðzÞ � P�r�2ðzÞ�. (17)

The hierarchical shape functions gbðx1; x2; x3; zÞ ðb ¼ 1; 2; 3; :::; 64) for pp5 are shown in
Table 1. They are ordered in a way to preserve the hierarchical property of the element.
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Table 1

The hierarchical shape functions for a pentahedral p-element ðpp5Þ

b gb b gb

1 x1ð1� zÞ 33 x1ð5z
4
� 10z3 þ 6z2 � zÞ

2 x2ð1� zÞ 34 x2ð5z
4
� 10z3 þ 6z2 � zÞ

3 x3ð1� zÞ 35 x3ð5z
4
� 10z3 þ 6z2 � zÞ

4 x1z 36 x1x2x3ð2x2 � 1Þð1� zÞ
5 x2z 37 x1x2x3ð2x3 � 1Þð1� zÞ
6 x3z 38 x1x2x3ð2x2 � 1Þz
7 x1x2ð1� zÞ 39 x1x2x3ð2x3 � 1Þz
8 x2x3ð1� zÞ 40 x1x2ðz

2
� zÞ

9 x1x3ð1� zÞ 41 x2x3ðz
2
� zÞ

10 x1x2z 42 x1x3ðz
2
� zÞ

11 x2x3z 43 x1x2ð20x
3
2 � 30x22 þ 12x2 � 1Þð1� zÞ

12 x1x3z 44 x2x3ð20x
3
3 � 30x23 þ 12x3 � 1Þð1� zÞ

13 x1ðz
2
� zÞ 45 x1x3ð20x

3
3 � 30x23 þ 12x3 � 1Þð1� zÞ

14 x2ðz
2
� zÞ 46 x1x2ð20x

3
2 � 30x22 þ 12x2 � 1Þz

15 x3ðz
2
� zÞ 47 x2x3ð20x

3
3 � 30x23 þ 12x3 � 1Þz

16 x1x2ð2x2 � 1Þð1� zÞ 48 x1x3ð20x
3
3 � 30x23 þ 12x3 � 1Þz

17 x2x3ð2x3 � 1Þð1� zÞ 49 x1ð14z
5
� 35z4 þ 30z3 � 10z2 þ zÞ

18 x1x3ð2x3 � 1Þ 1� zð Þ 50 x2ð14z
5
� 35z4 þ 30z3 � 10z2 þ zÞ

19 x1x2ð2x2 � 1Þz 51 x3ð14z
5
� 35z4 þ 30z3 � 10z2 þ zÞ

20 x2x3ð2x3 � 1Þz 52 x1x2x3ð6x
2
2 � 6x2 þ 1Þð1� zÞ

21 x1x3ð2x3 � 1Þz 53 x1x2x3ð6x
2
3 � 6x3 þ 1Þð1� zÞ

22 x1ð2z
3
� 3z2 þ zÞ 54 x1x2x3ð2x2 � 1Þð2x3 � 1Þð1� zÞ

23 x2ð2z
3
� 3z2 þ zÞ 55 x1x2x3ð6x

2
2 � 6x2 þ 1Þz

24 x3ð2z
3
� 3z2 þ zÞ 56 x1x2x3ð6x

2
3 � 6x3 þ 1Þz

25 x1x2x3ð1� zÞ 57 x1x2x3ð2x2 � 1Þð2x3 � 1Þz
26 x1x2x3z 58 x1x2ð2z

3
� 3z2 þ zÞ

27 x1x2ð6x
2
2 � 6x2 þ 1Þð1� zÞ 59 x1x2ð2x2 � 1Þðz2 � zÞ

28 x2x3ð6x
2
3 � 6x3 þ 1Þð1� zÞ 60 x2x3ð2z

3
� 3z2 þ zÞ

29 x1x3ð6x
2
3 � 6x3 þ 1Þð1� zÞ 61 x2x3ð2x3 � 1Þðz2 � zÞ

30 x1x2ð6x
2
2 � 6x2 þ 1Þz 62 x1x3ð2z

3
� 3z2 þ zÞ

31 x2x3ð6x
2
3 � 6x3 þ 1Þz 63 x1x3ð2x3 � 1Þðz2 � zÞ

32 x1x3ð6x
2
3 � 6x3 þ 1Þz 64 x1x2x3ðz

2
� zÞ
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2.2. The p-element stiffness and mass matrices

The potential energy U and kinetic energy T of the pentahedral p-element are

U ¼
E

2 1þ nð Þ 1� 2nð Þ

Z h=2

0

Z
A

1� nð Þ
qu

qx

� �2

þ
qv

qy

� �2

þ
qw

qz

� �2
" #(
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þ 2n
qu

qx

� �
qv

qy

� �
þ

qu

qx

� �
qw

qz

� �
þ

qv

qy

� �
qw

qz

� �� �

þ
1� 2nð Þ

2

qu

qy
þ

qv

qx

� �2

þ
qu

qz
þ

qw

qx

� �2

þ
qv

qz
þ

qw

qy

� �2
" #)

dAdz, ð18Þ

T ¼
r
2

Z h=2

0

Z
A

ð _u2 þ _v2 þ _w2ÞdAdz, (19)

where the dot denotes differentiation with respect to time.
The above equations may be expressed in terms of the dimensionless coordinates as

U ¼
EhA

2 1þ nð Þ 1� 2nð Þ

Z 1

0

Z 1

0

Z 1�x3

0

1� nð Þ
X3
n¼1

an

2A

qu

qxn

 !2

þ
X3
n¼1

bn

2A

qv

qxn

 !2

þ
2

h

qw

qz

� �2
2
4

3
5

8<
:

þ 2n
X3
n¼1

an

2A

qu

qxn

 ! X3
n¼1

bn

2A

qv

qxn

 !
þ

X3
n¼1

an

2A

qu

qxn

 !
2

h

qw

qz

� �
þ

X3
n¼1

bn

2A

qv

qxn

 !
2

h

qw

qz

� �" #

þ
1� 2nð Þ

2

X3
n¼1

bn

2A

qu

qxn

þ
X3
n¼1

an

2A

qv

qxn

 !2

þ
2

h

qu

qz
þ
X3
n¼1

an

2A

qw

qxn

 !2
2
4

þ
2

h

qv

qz
þ
X3
n¼1

bn

2A

qw

qxn

 !2
3
5
9=
;dx2 dx3 dz, ð20Þ

T ¼
rhA

2

Z 1

0

Z 1

0

Z 1�x3

0

ð _u2 þ _v2 þ _w2Þdx2 dx3 dz, (21)

where the parameters an and bn are defined in terms of the nodal x and y coordinates as

a1 ¼ x3 � x2 ¼ x6 � x5; a2 ¼ x1 � x3 ¼ x4 � x6; a3 ¼ x2 � x1 ¼ x5 � x4, (22)

b1 ¼ y2 � y3 ¼ y5 � y6; b2 ¼ y3 � y1 ¼ y6 � y4; b3 ¼ y1 � y2 ¼ y4 � y5. (23)

The displacement vector in this element may expressed as

u

v

w

8><
>:

9>=
>; ¼

XN

b¼1

Nbqb, (24)

where

Nb ¼

gb x1; x2; x3; zð Þ 0 0

0 gb x1; x2; x3; zð Þ 0

0 0 gb x1; x2; x3; zð Þ

2
64

3
75 (25)
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and

qb ¼

q3b�2ðtÞ

q3b�1ðtÞ

q3bðtÞ

8><
>:

9>=
>;. (26)

Substituting Eq. (24) into Eqs. (20) and (21) gives

U ¼
1

2

XN

a¼1

XN

b¼1

qTaka;bqb, (27)

T ¼
1

2

XN

a¼1

XN

b¼1

_qTama;b _qb, (28)

where

ka;b ¼

k3a�2;3b�2 k3a�2;3b�1 k3a�2;3b

k3a�1;3b�2 k3a�1;3b�1 k3a�1;3b

k3a;3b�2 k3a;3b�1 k3a;3b

2
64

3
75 (29)

and

ma;b ¼

m3a�2;3b�2 m3a�2;3b�1 m3a�2;3b

m3a�1;3b�2 m3a�1;3b�1 m3a�1;3b

m3a;3b�2 m3a;3b�1 m3a;3b

2
64

3
75. (30)

The coefficients of the pentahedral p-element stiffness and mass matrices are given in Appendix A.
They are expressed in terms of the following integrals:

Am;n
a;b ¼

Z 1

0

Z 1

0

Z 1�x3

0

dga
dxm

dgb

dxn

dx2 dx3 dz, (31)

Bm
a;b ¼

Z 1

0

Z 1

0

Z 1�x3

0

dga
dxm

dgb

dz
dx2 dx3 dz, (32)

Cn
a;b ¼

Z 1

0

Z 1

0

Z 1�x3

0

dga
dz

dgb

dxn

dx2 dx3 dz, (33)

Da;b ¼

Z 1

0

Z 1

0

Z 1�x3

0

dga
dz

dgb

dz
dx2 dx3 dz, (34)

Ea;b ¼

Z 1

0

Z 1

0

Z 1�x3

0

gagb dx2 dx3 dz. (35)

The above integrals can be calculated exactly by first substituting 1� x2 � x3 for x1 in the
integrand and then by using symbolic computing.
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The order of the element stiffness and mass matrices is

M ¼ 3N ¼ 1
2ðpþ 3Þðp2 þ 3pþ 8Þ. (36)

The integrals required to evaluate the element stiffness and mass matrices up to a maximal
value of p equal to 8 were calculated exactly using symbolic computing.
The processes of assembly of p-elements and application of boundary conditions are discussed

in Ref. [4].
Assuming harmonic motion, the governing equations of free motion can be obtained by

substituting the resultant global stiffness and mass matrices into Lagrange’s equations. This leads
to the following equations:

½K� o2M�Q ¼ 0. (37)

The above generalized eigenvalue problem can be solved using any known technique to yield
the natural frequencies.
3. Results

It is well-known that the frequencies obtained by the h-p version of the finite element method
converge from above to the exact values. Thus, these values are upper-bounds to the exact ones.
These upper-bounds can be improved by simultaneously refining the mesh and increasing the
polynomial order.
In all the applications described in this section, the value of Poisson’s ratio is taken to be 0.3.

The results of frequency calculation are presented in tabular format. In the tables, NEL and
NDOF denote, respectively, the number of elements and the number of degrees of freedom used
in the h-p version of the finite element method.
Two examples were first considered to assess the convergence and accuracy of the h-p version of

the finite element method. The two examples were chosen because solutions were available for
comparison. The first example is a moderately thick skew plate with a soft simple support
condition and h ¼ 0:2 (Fig. 2). Such a support condition means that the supported edge is only
restrained in the transverse direction (i.e. the out-of-plane displacement is zero). The soft support
condition is so called to distinguish it from the hard support condition which means a diaphragm
condition. Since the plate presents a geometric symmetry with respect to its middle surface and by
centering the coordinate system so that the middle surface lies in the xy plane, its vibration modes
may be classified as symmetric and antisymmetric modes. In the symmetric modes, the in-plane
Fig. 2. The skew plate.
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displacements are even functions of the z coordinate and the out-of-plane displacement is an odd
function of this coordinate. These modes are also called in-plane modes. In the antisymmetric
modes, the in-plane displacements are odd functions of the z coordinate and the out-of-plane
displacement is an even function of this coordinate. These modes are also called out-of-plane
modes. These two types of modes can be determined separately using the h-p version of the finite
element method by first centering the coordinate system so that the middle surface of the plate lies
in the xy plane and then by discretizing half of the domain above the middle surface into
pentahedral p-elements. Appropriate boundary conditions must then be applied on the middle
surface. These boundary conditions are uðx; y; 0Þ ¼ vðx; y; 0Þ ¼ 0 for the out-of-plane modes and
wðx; y; 0Þ ¼ 0 for the in-plane modes. Results for the frequency parameters O associated with the
six lowest out-of-plane and in-plane modes are respectively shown in Tables 2 and 3 along with
the values obtained by Liew et al. [1] using the Ritz method. The results were generated from
meshes of 2 and 4 elements (Fig. 3) with p ¼ 2,4,6, and 8. It is clearly shown that a rapid
convergence from above occurs as the number of elements NEL is increased from 2 to 4 and the
polynomial order p is increased from 2 to 8 and an excellent agreement with the solution of Liew
et al. is obtained using NEL ¼ 4 and p ¼ 8 because this solution uses the largest number of
degrees of freedom (NDOF ¼ 1310 in in-plane analysis and NDOF ¼ 1133 in out-of-plane
analysis).
The second example is a moderately thick cantilevered right isosceles triangular plate

with h ¼ 0:2 (Fig. 4). The two edges of equal length are free and the other edge is clamped.
The clamped edge is restrained in all directions (i.e. the in-plane and out-of-plane displacements
are zero). Results for the frequency parameters O associated with the 6 lowest out-of-plane
and in-plane modes are, respectively, shown in Tables 4 and 5 along with the values obtained
by Cheung and Zhou [2] using the Ritz method. The results were generated from meshes of
3 and 6 elements (Fig. 5) with p ¼ 2,4,6, and 8. In this case, it is also shown that a rapid
convergence from above occurs as the number of elements NEL is increased from 3 to 6 and the
polynomial order p is increased from 2 to 8 and an excellent agreement with the solution of
Table 2

Convergence of the six lowest frequency parameters O for the out-of-plane modes of the simply supported skew plate

NEL p NDOF Mode no.

1 2 3 4 5 6

2 2 28 3.122 15.767 15.767 15.767 16.419 16.457

4 103 1.726 3.981 5.054 6.109 8.288 9.025

6 278 1.691 3.576 4.060 5.283 6.708 7.044

8 601 1.687 3.568 4.038 5.243 6.587 6.833

4 2 47 2.503 5.347 5.605 8.985 10.947 15.767

4 185 1.699 3.639 4.104 5.458 7.227 7.311

6 515 1.688 3.568 4.039 5.246 6.605 6.843

8 1133 1.687 3.567 4.037 5.240 6.583 6.823

Liew et al. [1] 1.687 3.567 4.037 5.240 6.583 6.823
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Table 3

Convergence of the six lowest frequency parameters O for the in-plane modes of the simply supported skew plate

NEL p NDOF Mode no.

1 2 3 4 5 6

2 2 45 4.003 4.638 4.933 6.060 6.578 6.645

4 144 3.527 3.937 4.565 4.984 5.136 6.026

6 351 3.504 3.921 4.527 4.874 5.071 6.006

8 714 3.499 3.920 4.526 4.864 5.064 6.002

4 2 68 3.913 4.219 4.582 5.530 5.792 6.181

4 242 3.508 3.929 4.528 4.879 5.102 6.014

6 624 3.499 3.920 4.526 4.864 5.064 6.002

8 1310 3.497 3.919 4.526 4.862 5.062 6.001

Liew et al. [1] 3.497 3.919 4.526 4.860 5.061 6.001

Fig. 3. Meshes for solutions given in Tables 2 and 3.

1

0.2

Fig. 4. The right isosceles triangular plate.
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Cheung and Zhou is obtained using NEL ¼ 6 and p ¼ 8 for all the modes except for the sixth in-
plane mode. The value reported by Cheung and Zhou for this mode is an upper-bound to the
value calculated by the h-p version of the finite element method and is therefore less accurate.
Again, the solution which uses NEL ¼ 6 and p ¼ 8 is the most accurate because it uses the largest
number of degrees of freedom (NDOF ¼ 1673 in out-of-plane analysis and NDOF ¼ 1873 in in-
plane analysis).
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Table 4

Convergence of the six lowest frequency parameters O for the out-of-plane modes of the cantilevered right isosceles

triangular plate

NEL p NDOF Mode no.

1 2 3 4 5 6

3 2 34 2.219 6.027 7.193 13.672 16.900 18.220

4 137 2.041 4.604 6.109 9.319 10.359 12.560

6 384 2.027 4.516 5.987 8.584 9.309 11.270

8 847 2.025 4.508 5.977 8.529 9.239 11.163

6 2 65 2.120 5.253 6.703 10.175 10.983 12.951

4 265 2.036 4.545 6.035 8.694 9.406 11.370

6 753 2.027 4.513 5.985 8.541 9.251 11.175

8 1673 2.025 4.507 5.977 8.527 9.236 11.160

Cheung and Zhou [2] 2.023 4.505 5.974 8.523 9.234 11.154

Table 5

Convergence of the six lowest frequency parameters O for the in-plane modes of the cantilevered right isosceles

triangular plate

NEL p NDOF Mode no.

1 2 3 4 5 6

3 2 41 4.396 7.358 10.184 13.330 15.373 17.401

4 163 4.300 6.916 7.932 11.313 12.831 14.057

6 441 4.297 6.882 7.795 11.090 12.413 13.377

8 947 4.296 6.880 7.790 11.069 12.357 13.316

6 2 79 4.333 7.011 8.666 11.776 13.680 15.877

4 317 4.299 6.888 7.810 11.126 12.429 13.460

6 867 4.297 6.881 7.791 11.072 12.357 13.321

8 1873 4.296 6.879 7.790 11.068 12.354 13.312

Cheung and Zhou [2] 4.296 6.879 7.790 11.067 12.354 13.406

Fig. 5. Meshes for solutions given in Tables 4 and 5.
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Table 6

Comparison of the six lowest frequency parameters O for the out-of-plane modes of the square plate with a hard edge

support condition

h Method Mode no.

1 2 3 4 5 6

0.01 Present 0.096 0.241 0.385 0.481 0.625 0.866

Exact Mindlin [6] 0.096 0.241 0.385 0.481 0.625 0.864

Exact Kirchhoff [7] 0.096 0.241 0.385 0.482 0.626 0.867

0.1 Present 0.931 2.226 3.421 4.172 5.240 6.893

Exact Mindlin [6] 0.930 2.218 3.402 4.144 5.197 6.821

Exact Kirchhoff [7] 0.963 2.408 3.853 4.816 6.261 8.669

A. Houmat / Journal of Sound and Vibration 290 (2006) 690–704 701
A third application is to a square plate with h ¼ 0:01 (thin) and 0.1 (moderately thick). The
plate has a hard edge support condition. Such a support condition means that the supported edge
is restrained transversally and tangentially (i.e. the out-of-plane and tangent in-plane
displacements are zero). This example is intended to be used as a basis of comparison for two-
dimensional plate theories. Results for the frequency parameters O associated with the 6 lowest
out-of-plane modes are shown in Table 6. The results were generated from a four-element mesh
with p ¼ 8. The values obtained using Kirchhoff thin plate and Mindlin thick plate theories are
also given in Table 6. It can be shown that the agreement between the results of the three methods
is excellent in the case of the thin plate because of the fact that thickness effects are less significant
in the lower modes of this plate. In the case of the moderately thick plate, significant discrepancies
between the three-dimensional values and those obtained using Kirchhoff plate theory appear in
all the modes. These discrepancies increase with increasing mode number. This is due to the fact
that Kirchhoff plate theory neglects all thickness effects. In the case of the moderately thick plate,
the discrepancies between the three-dimensional values and those obtained using Mindlin plate
theory are less significant but increase with increasing mode number. This is due to the fact that
Mindlin plate theory takes into account transverse shear deformation and rotary inertia but still
neglects other thickness effects by assuming, for example, that any line which is originally straight
and normal to the middle surface remains straight after deformation.
A further application is to a very thick free hexagonal plate with h ¼ 0:4 (Fig. 6). This example

is intended to show the applicability of the present method to plates of more complex domains. It
appears that no three-dimensional frequencies are reported in the literature for this example.
Thus, new three-dimensional frequency values are presented which may be of interest to other
investigators. Results for the frequency parameters O associated with the 8 lowest out-of-plane
and in-plane modes are, respectively, shown in Tables 7 and 8. The results were generated from a
six-element mesh (Fig. 7) with p ¼ 2� 8. In this case, a rapid convergence from above is shown to
occur as the polynomial order p is increased from 2 to 8 and an accuracy up to three significant
digits is reached by using p ¼ 7 for the out-of-plane modes and p ¼ 6 for the in-plane modes. The
frequency parameters in Tables 7 and 8 may serve to validate two-dimensional plate theories and
other computational techniques.
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Table 7

Convergence of the eight lowest frequency parameters O for the out-of-plane modes of the free hexagonal plate

Mode no.

p 1 2 3 4 5 6 7 8

2 1.112 1.112 1.808 2.245 2.559 3.516 3.516 4.026

3 1.065 1.065 1.708 1.976 2.446 3.251 3.251 3.469

4 1.054 1.054 1.694 1.925 2.361 3.119 3.119 3.259

5 1.052 1.052 1.693 1.917 2.353 3.103 3.103 3.230

6 1.052 1.052 1.693 1.917 2.352 3.102 3.102 3.226

7 1.052 1.052 1.693 1.916 2.351 3.101 3.101 3.225

8 1.052 1.052 1.693 1.916 2.351 3.101 3.101 3.225

Table 8

Convergence of the eight lowest frequency parameters O for the in-plane modes of the free hexagonal plate

Mode no.

p 1 2 3 4 5 6 7 8

2 2.607 2.607 3.113 3.113 3.807 4.556 4.761 4.761

3 2.584 2.584 2.945 2.945 3.750 3.860 4.094 4.463

4 2.579 2.579 2.920 2.920 3.748 3.847 4.070 4.363

5 2.578 2.578 2.918 2.918 3.748 3.833 4.060 4.357

6 2.578 2.578 2.918 2.918 3.748 3.831 4.060 4.356

7 2.578 2.578 2.918 2.918 3.748 3.831 4.060 4.356

8 2.578 2.578 2.918 2.918 3.748 3.831 4.060 4.356

1

0.4

Fig. 6. The hexagonal plate.

A. Houmat / Journal of Sound and Vibration 290 (2006) 690–704702



ARTICLE IN PRESS

Fig. 7. Mesh for solutions given in Tables 7 and 8.
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4. Conclusion

The h-p version of the finite element method based on a pentahedral p-element has been
developed for three-dimensional free vibration of plates. The element’s new hierarchical shape
functions were expressed in terms of the shifted Legendre orthogonal polynomials. In the h-p
version of the finite element method, the accuracy of the solution can be improved by
simultaneously refining the mesh and increasing the polynomial order. Results of frequency
calculations for a skew plate on a soft edge support and a cantilevered isosceles triangular plate
using few elements and polynomial orders have illustrated the rapid convergence and high
accuracy of the present method. Results were also found for a square plate on a hard edge support
and comparisons were made with two-dimensional plate theories. It was found that, in the case of
the thin plate, Kirchhoff and Mindlin plate theories produced a similar accuracy in all the modes.
In the case of the moderately thick plate, Mindlin plate theory produced a better accuracy than
that of Kirchhoff plate theory because it takes into account transverse shear deformation and
rotary inertia. The accuracy tended to deteriorate as the mode number increased because Mindlin
plate theory still neglects other thickness effects. Furthermore, highly accurate values for a very
thick free hexagonal plate were presented for the first time.
Appendix A. Coefficients of ka;b and ma;b
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k3a;3b ¼
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m3a�2;3b�2 ¼ m3a�1;3b�1 ¼ m3a;3b ¼ rhAEa;b, (A.10)

m3a�2;3b�1 ¼ m3a�2;3b ¼ m3a�1;3b ¼ m3a�1;3b�2 ¼ m3a;3b�2 ¼ m3a;3b�1 ¼ 0. (A.11)
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